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Abstract: Integratedorecasing systems for precipitation, streamflow, dimbdplaininundation
are of critical importance in mitigatingeimpactsof destructivdloods caused by extremeeather
events. However, thekills of streamflow andloodplaininundationforecass derived fromvarious
Quantitative Precipitation Forecast (QP&Quirea greater level ainderstanding. In this study, a
set of QPF developed by the National Weather Service (NVg&used to drive a flood modeling
systemobtained througloffline coupling of a physsbased distributed hydrological model, the
Distributed Hydrolog Soil and Vegetation Model (DHSVM), and a hydrodynamic mpotited
Two-dimensional Runoff Inundation Toolkit for Operational Nedd®RRITON). This flood
modeling system as used to produce forecasts of streamflow feowtiplain inundationmaps
during three major flood events in the Brays Bayatershed (Houston, TexddSA) for a range
of QPF durations (672 h) Then,to investigate the effects of increasiQiF durations on the
forecasts,the forecasting sk#l of precipitation streamflow, andloodplain inundationwere
guantified The esults show that: 1) QPF skdlfor more intense and sustained events such as
hurricanes and tropical storms are higher than for shdetes intense event) while QPFand
streamflow forecastg skills decreaseas QPF durationdgncrease inundation forecasts under
longerQPF duration$24 or 72 h)show higher skil; 3) extendng the maximumQPFdurationin
operationalhydrologic modelingrom 24 h (under normal circumstande® 72 h(for extreme
event3 may increase thekills of long lead time forecaster largescaleevents likeHurricane

Harvey.

Keywords: flood forecastingskill, extreme weather events, quantitative precipitation forecast

(QPF),QPFduration inundation mapping
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1. Introduction

Extreme precipitation events are occurring with greater frequency and intdusitio
climate changé_.ehmann et al. 2015)esulting inincreasinglydisastrous flood$:loodscancause
massive destructiom a short perioaf time, but arechallenging to forecast given titemplex
relationshipsbetween meteorological and hydrologic systeAxscurateflood predictiors with
sufficiently long leadimesare desiredto supportemergency managers afitst respondersn
determinng a best strategy fdiast action and evacuatior{Georgakakos and Hudlow, 1984;

Selvanathan et al. 2018)

The accuray of flood forecastsdepend on the cascadhg prediction skills across
precipitation streamflow, andloodplain inundation. With the exception osnowmeltdriven
floods (Fang et al., 2014the main source of uncertainty in flood forecastiagstemsis
precipitation Othersecondaryactorsincludeinitial soil moisture conditions and model structural
uncertainty(Zappa et al. 2011Yhe skills of precipitationforecass may varywith stormdrivers,
duration andintensity. For example, Sikder et al. (2019) reported that hurricatecedstorms
are more challengingp forecasthan the less intense and more frequent wiintetal systems
Considering thathte most destructive floods are usually broughtby hurricanes(such as
Hurricane Harveyin 2017; FernandeRivera et al. 2019; Kao et al. 2019), thecuracyof
precipitation forecastduringthese stormss particulaty important(Droegemeier et al. 2000; Ko

et al. 2020; Marchok et al. 2007; Sikder et al. 2019).

Moreover the erros from precipitatimm forecastsmay be exacerbate in streamflow
predictions(Cloke and Pappenberger 2009; Cluckand Xuan 2008; Rossa et al. 2011; Van
Steenbergerand Willems 2014)due tothe uncertainties associatewith hydrologic model

structures, parameterizatigmsputs and initial conditios (ClokeandPappenberger 2009; Zappa
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et al. 2011 Demargne et al. 2014ain et al. 2018 While the relationships betwegmedicted

precipitation and streamflowave beerwell recognized (Parodi and Ferraris 2004; Jung and

Merwade 2015)ther relative forecastingkillsd andhow the uncertainties propagétevarrant
further investigationConsidering the declinintendency ofrecipitation forecasskills aslead
time increasesAdams and Dymond (2019) questionbe benefitsof appling longer duration
QPF in streamflow forecastTherefore the effects of QPF duration on thest practice®f

streamflowforecastshould not be overlookd@GourleyandVieux 2005;Ibbitt et al. 200511 et

al. 2017)
The skills of floodplain inundationforecastsassociaté with varying QPF durationare
also not well understoodThe 2D hydrodynamic models areommonly usedor floodplain

inundation forecasts for emergency management (Apel et al., 2009; Bhola et al. aRBa8yh
1D modelsandother methods likéleight Above Nearest DrainagdAND), are also adopted in
practice(Adams et al., 2018lohnson et al., 2019.ccuratehydrodynamicsimulationstypically
demandhigh-resolution model(Merwade et al. 2008%pinceinundation forecastaremuchmore
computationally expensivihanstreamflow forecastghey are usuallyproducedessfrequerly
during extreme even{8hola et al. 2018Jain et al. 2018)Efforts have been ndato resolvethe
tradeoff between modeling accuracy and computatiobhatden in inundation forecasting
(Schumann et al., 2013; Sand and Schubert, 201®ecently, a opensource 2D hydrdynamic
modeb the Two-dimensional Runoff Inundation Toolkit for Operational Need®RITON,;
MoralesHernandez et al. 202(hd 202)0 was developed tieveragehe multtGPU architecture
of modernhigh-performance compute(siPC)for accelerated inundation modelidevertheless,
given the high computing cost, is not realistic toexpect that one magimulate all possible

ensemble inundation scenari@shich is often dor for ensembleorecipitation and streamflow
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forecasting. Overall,theskills of inundationforecasing methodsneed to be better understood

order to prioritizehe limited computing resourceiuringoperation.

The objectives of this study ate exploreintegratedflood forecasting skib and their
relationships to QP&uration as well ago identify optimal flood forecasting strategiésere the

AQPFd u r a tefiers to the maximum length of QPF used in the subsequent hydrologic modeling,

which can range from 6 hours to the full length of pinecipitationf or ecast | ead ti me.
is defined as the tim@ngesince a forecast is made to the forecasted future tindegrgakakos
and Hudlow, 198y Specifically, weaddress théllowing questions in this research:

1) How dothe errorsof forecasted precipitatiopropagatehroughout the flood forecasting
systemduring different types aéxtremeweatherevent®

2) What arethe skills of forecasted precipitation, streamflow, dlmddplain inundation
across differenQPF duratiog?

3) Should longeduration forecasted precipitation be curtailed when making streamflow
and floodplain inundation predictions? How does the timing of floodplain inundation
forecasts initiation affect the forecesf skill?

4) Do flood forecasting sk differ betweerdifferent type of weathereventsas defined by

thar rainfall intensitiesandduration®

The remaider of this paperis organized as followsln Section 2,the study area and
selectedlood eventsareintroduced. Section 3 describes the methods used in this study, including
modelsto produce the forecastsidmetricsusedto evaluatdorecastingskills. In Section 4, the
skills of forecastedprecipitation, streamflowand floodplain inundationunder multipleQPF
durationsarecomparedIn Section 5,issuegelated tahevaryingforecasing skills are discussed

Lastly, heconclusionsare presented in Section 6

5
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2. Study area andselectedflood events

a. Studyarea

The Brays BayoWatershed is located in southwest Hougimostly in Harris County)
Texas USA, as shown irrig. 1 (29.37 29.45°N, 95.1695.41°W). According to the Harris County
Flood Control DistricfHCFCD), the drainage area of the watershed is 328 Rimewatershed
slopesdownward gradually from west to east as the watershed approaches the ddeest.
climatology of the watershed is generally wet and subtropical, characterized by humid, warm
summers and mild winters. The average rainfall is 1415 mmgagrwith July and August being
the wettest month@n averagpe The primary land cover type is urb&@b(9% urbanizedJSGS
2014 and the primary soil type is claywhichhas a very low hydraulic conductivity. Thus, water
does not easilyinfiltrate into the soil These topograptal, climatic, and geograpbal

characteristics makihe watershegrone to flooding

_\ Louisiana"

= Gulif of Mexico
Sowces: Esri, HERE, Garmin, Intermap, incement Lege nd

: 4 USGS Gages
—— Streamnetwork
[ ]watershed Boundary Low : —0.35 m

DEM
wew High : 48.76 m

Fig. 1. Location (left) and map (right) of the study area, includinBigital Elevation Model DEM)
informationandlocations of USGS streamflogages.

b. Selectedlood events
The Brays BayoWatershedas experienced multipkevereflood events in the last few

decades. Three recent major flood evemwth different driving storm typewere consideredn



128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

this study the Memorial Day Flood (Mag5 26,2015), the Tax Day Flood (Aprdl7 18,2016),
and Hurricane Harvey (Augugb 31, 2017). Both the Memorial Day Flood and the Tax Day
Flood eventswere causedby shortterm convective storms (Furl et al, 2018; Nielsen and
Schumacher, 202@Yhich broughtin 226 mm and 243 mf rainfall during 9 h and 24 h periods
TheHurricaneHarveyflood eventwas caused by slow-movingCategory 4 hurricangkao et al.,

2019)which broughtin 893 mmof rainfall duringa 108 h period

3. Methods and data

a. Precipitationobservation and forecasts

Both observed and forecasted precipitatitata were useth this study.The National
Center for Environmental Prediction (NCE&tpge IV(ST4)Quantitative Precipitation Estimates
(QPE Lin 2012, Lin and Mitchell 200 wereconsidereca s t h e i gusedio pvdluater ut h o
the accuracyof forecased precipitatio® andalsoto support hydrologic model calibration and
validation The ST4 data merges raw radmsed estimates with automatic rainfall gage
observations and is further qualitpntrolled by National WeatherService (NWS) River
ForecastingCenters (RFCs)lhe ST4 data are availaldeanhourly time stepvith a4-km spatial
grid resolution from 2002 tthepresentThevaluesare produced in nedeal timeas they become
available typically within one hour aftereceiving data from the RFC&iven itshigh quality,
ST4 haseen used in many studies to represdservedrecipitation(Ashouri et al. 2015; Kao

et al. 2019Nelson et al. 2016; Sapiano and Arkin 2009)

TheNWS Weather Predictio€ e n t (&/PQ Quantitative Precipitation Forecasts (QPF
https://lwww.wpc.ncep.noaa.gov/html/fam2.shtmifgpére used for forecasted precipitation data
Using a suite of operational models, WR€searcherieveragetheir experiencedo estimatethe

probable amount of precipitati@tross various futur@urations The QPFproducts argrovided

7
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four times a dayt 6 h temporal an® km /2.5 km spatial resolutiorfer a maximum ofa 7-day
lead time Specifically, QPFis manuallycreated for éhour periodsn Days1, 2 and 3while on
Days 47, QPFis created for 24our periods and then equally distributed toh6ur periods
Overall, both ST4 and QPF were processed from May 23 to May 29, 2015 for the Memorial Day
Flood, from April 15 to April 21, 2016 for the Tax D&yood, and August 21 to Septemlger

2017 for Hurricane Harvey.

b. DHSVMstreamflow simulation

A physically basedhydrological modelthe Distributed Hydrology Soil and Vegetation
Model (DHSVM, Wigmosta et al. 1994was employed in this study to simulate streamflothe
Brays BayouwWatershedDHSVM is anopensourcemodel thatcouples full water and energy
balancedo calculate the hydrologic processehigh spatial and temporal resolutghe model
has beemevised with parameters to characterize the hydrologrcalesses in urban asd&€uo et
al. 2008) andthusis adequate foflood simulationin watersheds with urban land covers (Zhao et
al. 2016; Shao et al. 2020; Li et al. 2020)this study, the model was established with a spatial
resolution of 20m anda temporal resolution of 3 Wl input dataare summarized irError!
Reference source not foundDriven by ST4 and validated by observed streamflowDtHEVM
modelparametersverecalibratedasdescribed ilAppendix A Text 1 and Fig. A1 TheDHSVM
performanceof the threeselectedlood events is shown iRig. 2, andare considered satisfactory

for thepurpose®f this study.

Table 1

Summary of DHSVM input ata

Type of Data Source Spatial Resolution

Digital elevationmodel USGSNational Elevation
(1/3 aresecond, ~10m) Dataset $ugarbaker et al. 201"

Resampled to 20 n

8
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177

178

179

180

181

182

183

184

Soil type

USDA NRCSSSURGO
DatabaseNauman et al. 2018

Resampled to 20 n

Landuselandcover
(status o011

USGSNational Land Cover
Database (USGS 2014)

Resampled to 20 n

NCEPStage IV Quantitative

Observedrecipitation Precipitation Estimates (ST4) 4 km
L o 5 km (n 2015 and
Forecastegrecipitation WPC Quantitative Precipitatior 2016

ForecastsQPH

2.5km (in 2017

Additional meteorological
forcingdata(other than
precipitation)

North America Land Data
Assimilation System (NLDAS
Xia et al. 2012)

1 km, averaged
over thewatershed

1000

1000 1400
900 a) Memorial Day Flood 000 b) Tax Day Flood c) Hurricane Harvey
R2=097 RZ2=0.94 1200 1 R2=0.95
800 \ 800
NSE=096 1 NSE =0.94 NSE =0.95
= 700 - ] = 700 - 1000 -
L RB =16.4% = RB=6.3% < RB =0.4%
£ 600 - £ 600 - & g0 |
E s004 1 - Observation E 500 %
= . . = =
2 400 J — Simulation g 400 £ 600 4
2 g 2
Z 300 @ 300 @ 400 -
200 200 1
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100 100
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SN I N I NI R N N N I S S B P
W2 W W o Y W2 W Wi W2 o W > W o v o o W % WV 2 \ W2
R o A AR S RS SR NN S R SR oA e Y @ @@
N N R U A RN O N N N A o » FF ¢ SN

Fig. 2. Evaluation of DHSVMflow simulationsatgage08075000 acroghethree storm events of
interest:(a) theMemorial Day Flood(b) the Tax Day Flood, angc) Hurricane Harvey.

Further, QPFwas utilizedas precipitation inputir simulatingforecastedstreamflowvia
DHSVM. While intuitively one may expect wimply include QPF across alfluratiors (up to 7
days) in hydrologienodeling in practiceRFCsutilized QPF witha defaultduration(typically 24
or 48 h) under normal circumstances in their operational streamflow foreca@teng zero
precipitation afterthe defaultduration. In the case of th&Vest Gulf River Forecast Center

(WGRFQ), the QPF webpagéttps://www.weather.gov/wgrfc/warfcgpfpagetatesiin general,

the first 24 hours of QPF is used as input in the creation of river forecasts; however, dependent
on specific weather events, up to the entire 72 hours maysddd T M3edayDPFis then

utilized by WGRFCto createhe 5day Significant Flood Outlook product.
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Although the rationalef this practicas not specifically explainedhere isanotabletrade
off between forecasturationand accuracy. Given thepidly decreasing skills of QPF in longer
QPF durationgCuo et al. 2011a; Seo et al. 2@),8he inclusion of mediumange QPF may lead
to worse streamflow forecasting skillddams and Dymond 2019However, bnger lead time
war ni ngs ( before the eerd arBusefubfgreanergency responders and infrastructure
operatorgGolding 2009; Li et al. 2017; Panket al. 2009)For a longterm event like Hurricane
Harvey, there can be valireusng longerdurationQPF, even if they are less accurakar each
event we testdand compar@different maximum QPHBuratiors from 6 h to 72 Hor streamflow
forecastslIn other words, these additional DHSVM simulations can help us undetb@amdpact
of increasingnaximum QPFlurationson streamflow forecaistg skills andthe potentialbenefits.
A summary of all DHSVM simulationss provided in Table 2For each flood evena base
simulation driven by ST#vas conductedlrhen ST4was replaceavith QPFproducedat different

starttimes and with different QPEuratiors to simulateforecastedstreamflow.

Table 2
Summary of all DHSVM simulations
Event Names & Source of QPF Start Maxmum QPF Number of DHSVM
Time Precipitation time Length in DHSVM Simulations
(YYYYMMDD _HH) P Simulation (hours)
1 set of ST4 -- 1
Memorial Day Flood (20150523 00 2 Iz]:xt'hgp':
(2015052300i ST4and28 20150523_06, 6, 12 198 o4 30 336
2015052923) sets of QPF é, 36, 42’ 48’ 54’ 60, (=28x12)
20150529 18) 56, 72)
1 set of ST4 - 1
TaxDayFlood . . (20160415 00 12 IZ:Xt'hSPF
(2016041500i sets of OPF 20160415 086, 6, 12 198 4. 30 336
2016042123) é 36 42 48 54. 60 (=28x12)
20160421_18) 66, 72)
1 set of ST4 - 1

10



200
201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

(20170821 00 12 Max. QPF

Hurricane Harvey, 56 sets of lengths
672
(20170821001 N R
2017090323) ’ 36, 42, 48, 54, 60, -

20170903_18) 66, 72)

Note: The QPF forecastwre createtbur times aday(00, 06, 12, 18 hours), labeled by YYYYMMDD_HH
¢. TRITONinundationmodeing

A multi-GPU open sourcD hydraulic modelTRITON (MoralesHernandez et ak020
and2021), was employed in this study ®mulate surfacénundationdriven bythe forecasted
streamflow conditionsTRITON solvesthe full 2D shallow water equations with source terms
using an explicit numerical scheme. The modealasigned for modern HPC and can leverage

multiple CPWs or GPUs tolargely accelerathydrodynamicsimulatons

The TRITON model was selected in this st(itdgtead of the simplified modésdiffusive
and quasinertial) based on two considerations. First, spatially distributed and piasesl
models are essentidibr obtaining acceptable resultén terms & accuracy and stabilijyfor
rainfall-runoff problems (Costabile et al., 2013; Costabile et al., 2015; Caviedes et al., 2020).
TRITON is not only computationally efficienbut alsohas provento work under any flow
conditions. Second, TRITON provides seaableresult® with minimal constrain® when
simulating an urbanized watershed with highly variable land surface condiioreover, a main
advantage of TRITON is the use of the DEM as the computational mesh, such that the user does
not have to create a mesh for each cabés is important becaugbe creation of an efficient
mesl® such as amnstructured triangulanesh, a quadtreemeshor somethingsimilar (Ferraro,
et al., 2020; Costabile and Costanzo, 2062 both time consuming anekquiresmodeling
expertise Furthermore,the data exchange between subdomains is crugidlen having an

unstructured mesh, amequires algothms that could directly impact the performance.

11
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Theperformance portability for multiple GPUs is ensypdvided that the supercomputer
contains NVDIA-GPUs in its hardwar€eThe speed of the calculations will only depend on the
capabilities of thegraphic card. Given that more and more supercomputers utilizeli&U

accelerators, this proposed methodology can be applied elsewhere.

The TRITON setup forthe Brays Bayou Watersheihcludeda 10-m resolutionDEM
(Sugarbaker et al. 201@nd a spatiallgaredMa nni ngés roughness coef fi
(2021). The TRITON computational domaextend downstreambeyond the watershedo
minimize any backwater effecta. similar process used liyangrade et al. (2019as followed
to convertthe simulaed DHSVM streamflow intacorrespondingTRITON inputs. The input
DHSVM streanflow hydrographs extended for 10 days and captured thegbesnflow around
the end of thdifth day. The TRITON outputs were saved at a-8fn timestep across the entire
computational domainThe simulations were conducted using the Summit supercomputer
managed by th®ak Ridge Leadership Computing Facil{tyttps://www.olcf.ornl.gov/summit/)

Further detail®n theTRITON setup and validation areguidedin AppendixA, text 2

Even with the enhanced computing speed, it is still not feasible to conduct TRITON
simulatiors for all ensembldOHSVM streamflow scenarios reported in Tablé@wer frequency
is also an issue that decision makers are to be faced with when carrying out inundation forecasts
in practice as compared to the frequency in streamflow forec@iberefore, TRITON scenarios
weredesigned to investigate the performanédovecasts made at different stages of the flood
events under differefPF durationsForecasts were made feach ofthe three events at three
separatstages: at the onsetftdoding, around the time dhe flood peak, anduring the recession
period.For the Memorial Day flood anthhe Tax Day flood, an extra scenario was tested to see

whether forecasts made slightly (i.e., 6 h) before the rainfall events achieve similar forecast skill
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244
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252

253

254

255

256
257

as the forecasts made at the beginrilgich could addadditionaltime for emergencwgctions.
Meanwhile, lecause Hurricane Harvey lasted miarige® and the rainfall did not reach its peak
until about 2 days latérwe did not see mucldifferencein the forecasted rainfall total§.e.,
between forecasts madenGarlier or 6 hlater. Therefore five scenarios were set for Hurricane
Harveyat an interval of 12 & three for the prementioned stagasd two additional scenarios
distributedinto the rising limb and recession limb periodssummary of allof the TRITON
simulationgs provided in Tabl&. For each flood event, a basRITON simulationwas conducted
using the ST4driven DHSVM streamflow Since the timeseries dhe actualinundationis
unavailable the base simulatiowas usedas a proxy. Then, the forecasted inundatienwere
produceddriven by different QPFdriven streamflow forecast3.o provide an outlook for the
whole event and to capture the maximum inundation extent, a single streamflow forecast with a
long lead time (5-day) was adopted talrive an inundation forecasEinally, skills of these

inundation forecasts were evaluated.

Table 3
Summary of all TRITON simulations
. Number of
Event Names & Time Sopr_ce _of Forecast Start Time Iemg;(kllr?r:]gHQSl?/II:\/I _TRITQN
(YYYYMMDDHH) Precipitation (YYYYMMDD_HH) . ; simulations
simulation (hours) (Total 41)
1 set of ST4 -- -- 1
" 1 Dav FI 20150524 06 (72) 1
e(”;g;gos ;‘i/lBOOd 20150525 12 (12, 24) 2
2015053112) QPF 20150525_18 (12, 24, 72) 3
20150526 06 (12, 24, 72) 3
2015057 12 (12, 24) 2
1 set of ST4 -- -- 1
Tax Day Flood 20160416_12 (72) 1
(2016041400 20160417 _12 (12, 24, 72) 3
2016042318) QPF 20160417 _18 (12, 24, 72) 3
20160418 12 (12, 24, 72) 3

13
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259

260

261

262

263
264

265

266

267

268

269

270

20160419 12 (12, 24) 2

1 set of ST4 - - 1

20170825_12 (12, 24, 72) 3

Hurricane Harvey, 20170826 12 12, 24,72 3
(2017082300 — (12, 24, 72)

2017090118) QPF 20170827 12 (12, 24, 72) 3

20170828 _12 (12, 24, 72) 3

20170829 12 (12, 24, 72) 3

Note: The QPF forecasts aneatedour times aday (00, 06, 12, 18 hours), labeled by YYYYMMDD_HH
d. Forecasting skill metrics

The overallworkflow to evaluate the forecasting skitf the flood forecasting system is
shown in Fig 3. For each assessment, skill scaadculations were conducted to demonstrate the

uncertainty and skill of each forecast throughout the flood forecasting process.

* Hit Rate (HR)

* False Alarm Rate (FAR)

* Frequency Bias (FB)

* Critical Success Index (CSI)

* Relative Bias (RB)

* Precipitation Peak Timing Bias (PPTB)

Precipitation Forecast Skill Assessment

. Skill Score -

Streamflow Forecast +R-squared
Skill Assessment *Nash-Sutcliffe Efficiency
v (NSE)

Streamflow |, Skill Score ™ | Streamflow *Relative Bias (RB)
- Calculation - *Relative RootMean Square
Hindcast Forecast Error (RRMSE)
|
Floodplain Inundation TRITON
Forecast Skill Assessment +Hit Rate (HR)
v «False Alarm Rate (FAR)
: ~ - . « Critical Success Index (CSI)
11111:11da'r1011 -, Skill 8091e - Inundation «Error Bias (EB)
Hindcast Calculation Forecast

Fig. 3. Schematic overview girecipitation, streamflow, and inundation forecasluation

i

1) Precipitation
In this study, the QPF were first assessed to determine their spatial and temporal accuracy
with respect to ST4Given the different spatial resolutions between QPF and &hQPFgrid
cell wascompared with the closest ST4 geiell. Additionally, thehourly ST4 datavasaggregated
to a 6h time step in order to be comparable with the QPF. The skill scores for precipitation

forecasts were adopted from Seo et al. (Bpl&hdinclude the hit rate (HR)thefalse alarm rate

14



271 (FAR), and frequency bias (FBJhen the Critical Success Ind€<SI) was used as an indicator
272 of the overall performance of the forecastsperspective of spatial and temposaaicuracyof

273 rainfall (see details in Table A.2)

274 In addition,the accuracyvith regard tototal rainfall andpeaktiming are also important
275 since it directly affectthe performances of streamflow and inundation forecliesrelativebias
276 (RB) of total precipitation over the watershadd the precipitation peak timing bias (PP&¥
277 also kaminedfor individual QPFmade at different times during the evei@pecifically, the RB

278 of the total precipitation is defined &dlows:

279 YO 0 O 0

280 in which,0 and"Orefer to observed and forecasted precipitatiorsraxer the watershedlt the
281 i"timeinterval (6 h) notationT is the number of timtervak before the forecgsandN is the

282 number of time steps until the end of the event.

283 2) Streamflow

284 DHSVM simulations were used as substitdtethe WGRFCstreamflowforecasts in this

285 study since WGRFC streamflow forecasts are only available for specific QPF durafioas
286 simulations were carried out to mimic the figay forecasts produced by the WWBC (using the

287 CHPSFEWS model, hereafter referred to as RFC forecasfgcifically, QPFof various

288 durations was incorporated the hydrologic modelingscenariosSkills of streamflow forecasts
289 are to be evaluated two contextsThe firstcontextis the skill ofan instantaneoys o r -tiir read )
290 streamflow forecast systeffihe DHSVM simulations based on QPF waidichparticularduration

291 (Table 2)were synthesized to produce hydrographs composed fully of forewdstthe same
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310
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313

314

duration éeedetails in AppendiA, text 3, which allows for the determination of theverall
forecasing skills of an instantaneous streamflow forecastystem across the events the
instantaneous streamflow system, the streamflow forecasts are updated every interval of the QPF

duration.

The other one ithe skill of singlestreamflow forecastwith a long lead timeThe RFC's
operational streamflow forecasts are usually madke & lead time much longer than the QPF
duration they adopAt the WGRFC, the lead time of the streamflow forecasts is 5 days, no matter
how frequently the forecasts are made. For the operational purpose, only one set of streamflow
forecastgs made usig a fixed QPF duration for a given event (Table A.3). Performance of these
single pieces of streamflow forecast of long lead times desewveattention because they are to
provide a prediction of the entire flood event and can be taken as inputs épldlimonundation
forecastsA DHSVM baseline run (driven by ST4) for each storm event was comparedheith
forecasted streamflow outputs to assess the streamflow forecasting skill under d@fefent
durations The skill statistics that were employedlirde R?, NSE, RB of the mean streamflow
Additionally, relative root mean square er{f&RMSE)andRB of peak streamfloware also used

to the instantaneous streamflow system skill evaluation

3) Inundation

Forecasted inundaticimeseriesmaps were generated fall scenarios reported in Table
3. The skill of the forecasted floodplains duritigese three flood eventgas asessed against
correspondindpaseline floodplain simuladeoy TRITON using ST4driven DHSVM streamflow
Additionally, forecasted floodplaindriven by DHSVM with different maximum QPéfuratiors
(12, 24 and 72h) were also simulated to evaluate the pogtenefitof increagng the maximum

QPFdurationin operationaktreamflowforecasting The metricaused in Wing et al. (2017) were
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327

328

adoptedo quantify the skill of the forecastsee Table A.1)ncluding the hit rate (HR) thefalse

alarm rate (FAR)thecritical skill index (CSI)andtheerrorbias(EB).

4. Results

a. Skills of forecasted precipitation

As thedurationof forecasted precipitatiancreases, the QPF skill statistgrsnerallytend
to worsen. The QPF skill statisticamparedigainst ST4 QPE for the three extreme weather events
in Brays Bayou are shown in Fig. FAR, FB, and CSI generallyerform worsevith an increased
QPF durationHowever,longer QPF duratiorleads to higheHR skill due tothe probability of
rainaccumulatindgor each grid as timpassedig. 5 compares the forecasted precipitation amount
in mm/(6hr) with the ST4 QPE under differedtirationsof interesf(i.e., 12, 24, 48, and 72 h). The

resultsindicate that the longer ti@PF durationthe larger the error of the QPF rates.
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Fig. 4. (a) Hit rate (HR), b) false alarm rate (FAR)¢) frequency bias (FB), and) critical success index
(CSI) of QPHdata for the dates of the Memorial Day flood, Tax Day flood, and Hurricane Harvey.
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Fig. 5. Discrepancy in precipitation rates for the three case flood eve@®Byduration(a) 6 h, ) 12 h,
(c) 24 h, andd) 72 hduration Each data point represents @ccumulated precipitation.

QPF tend to overestimate thrm duratiorbutunderestimate the precipitation rates. The
FB valuesareover 1 for the three events under all @BFdurationsand tend to increase as the
duraton increass (Fig. 4). The results inFig. 5 show that the QPEend to underestimate the
precipitation rate, anduchunderestimation increases as the rain rate increasese Timdings
agree withprevious studies by Brown et al. (2012) &uwkovich et al. (20D4indicatingthat the

NWS QPF underestimated rainfall during extreme precipitai@mts Also, Chong et al. (2021)
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356

indicates that the low skilis convective parametrizatipandcoarse resolution of modeling grids

within NWP models might be causefthis phenomenon.

The QPF show higher performance offiorecasted rainfall totals as QPF duration
increased even thoughthe QPF forecast skill metricwith regard tospatial and temporal
distribution decreased. The RBtberainfall totals othe QPF unde#b, 12, 24, and 72 tlurations
for Hurricane Harvey are shown in Fig\&ingHurricane Harvews arexample, liere arenotable
underestimations the forecasts made before the precipitation peak (Aug 27 3:0GA pn).
However this underestimatiogetssmalleras the QPF duration increagésy. 6¢) Additionally,
the PPTB alsmarrowsas the QPF duration increases (Appefidikle A4). Similar patterns were

found forthe Tax Day Floodput not for the Memorial Day Flood.

QPF during the Memorial Day flood have the worst skill, while the Tax Day flood and
Hurricane Harvey have comparable skill statistics (Fig. 4). This is likely due to the Memorial Day
flood occurring over a short time peri¢@ h), while the other two events were more prolonged
(24 h for the Tax Day flood and 108 h for Hurricane Harvéy)addition, the QPF rates for
Hurricane Harvey are better than for the Tax Day flood (Fig. 5). High uncertithtyegard to
forecastingconvective events might be a reason for the lower skill of the Tax Day flood QPF (Sun
et al., 2014; Chong et al., 202FBurthermorethe higher spatial resolution of ti2017 QPF (as

compared to that in 20)énight also play a role in this comparison.
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b. Skills of forecastedtseamflow

For the instantaneogsreamflow forecastshé streamflow forecast slsljenerally worsen
as thedurationincreases (Fig7), which is consistenivith the precipitation QPF statistick
addition, streamflow forecasts show higher skill in Hurricane Harvey and the Tax Ddyttian

the Memorial Day flood, similar to QPF skill evaluation results.
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366  Fig. 7. Skill statistics for thenstantaneoustreamflow forecasts bQPF duratiorwhen compared with the
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368 Sutcliffe Efficiency (NSE){(c) Relative Bias (RB)(d) Relative Root Mean Square Error (RRMSE), and
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The mean streamflow is underestimated for almosQ®&F durationgluring the three
events as indicated by amparsons betweerthe forecasted mean streamfland the baseline
modekdstreamflow(Fig. 8). This is attributed to the negative bias of QPF, as discusSastiion
4a This negative bias is exacerbated asQRE& duratiorincreasegFig. 7(c) and Figure 8)This
is because the streamflow forecasts are more affected by the accumulation of the QPF errors over
time, while the benefit of initializing the model using the ST4 QPE data becomes less significant

(the streamflow fagcasts are generated with ST4 QPE prior to the forecasted precipitation)

Fig. 8. Forecasted mean streamflow compared with baseline mean streamflow for USGS (sfations
08074810 an¢b) 08075000.

In instantaneous streamflow forecasts, only hydrograplgynentsvithin the period of the
QPF duration are used (Fig. A3). The streamflow forecast performance within the period of a QPF
duration rests on the accuracy of the precipitation rate estimatatligoperiod. As the QPF
duration increase the underestimation of precipitation rates in QPF gets exacerbated (Fig. 5).
Therefore, the evaluation skills of instantaneous streamflow forecasts are in consistence of the

QPF forecast skills.
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